REPUBLIC OF KENYA
MINISTRY OF PUBLIC WORKS

GENERAL SPECIFICATIONS
FOR
PLUMBING & DRAINAGE WORKS

ISSUED BY:
CHIEF ELECTRICAL & MECHANICAL ENGINEER (BS)
MINISTRY OF PUBLIC WORKS
P.O. BOX 41191,
NAIROBI.
<table>
<thead>
<tr>
<th>CLAUSE</th>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>Part 1: General mechanical specification</td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.02</td>
<td>Quality of materials</td>
<td>1</td>
</tr>
<tr>
<td>1.03</td>
<td>Regulations and standards</td>
<td>1</td>
</tr>
<tr>
<td>1.04</td>
<td>Electrical requirements</td>
<td>2</td>
</tr>
<tr>
<td>1.05</td>
<td>Transport and storage</td>
<td>2</td>
</tr>
<tr>
<td>1.06</td>
<td>Site supervision</td>
<td>2</td>
</tr>
<tr>
<td>1.07</td>
<td>Installation</td>
<td>3</td>
</tr>
<tr>
<td>1.08</td>
<td>Testing</td>
<td>3</td>
</tr>
<tr>
<td>1.09</td>
<td>Colour coding</td>
<td>4</td>
</tr>
<tr>
<td>1.10</td>
<td>Welding</td>
<td>4</td>
</tr>
<tr>
<td>1.11</td>
<td>Welding PP-R pipes</td>
<td>5</td>
</tr>
<tr>
<td>1.12</td>
<td>Welding Qualifications</td>
<td>5</td>
</tr>
<tr>
<td>2.00</td>
<td>Part 2: Particular specifications for plumbing and drainage</td>
<td></td>
</tr>
<tr>
<td>2.01</td>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2.02</td>
<td>Materials and standards</td>
<td>6</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Pipework and Fittings</td>
<td>6</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Valves</td>
<td>8</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Waste Fitment Traps</td>
<td>9</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Pipe Supports</td>
<td>9</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Sanitary Appliances</td>
<td>11</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Pipe Sleeves</td>
<td>11</td>
</tr>
<tr>
<td>2.03</td>
<td>Installation</td>
<td>11</td>
</tr>
<tr>
<td>2.3.1</td>
<td>General</td>
<td>11</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Above Ground Installation</td>
<td>12</td>
</tr>
<tr>
<td>2.04</td>
<td>Testing Inspection</td>
<td>12</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Site Tests – Pipework Systems</td>
<td>12</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Site Test – Performance</td>
<td>13</td>
</tr>
<tr>
<td>2.05</td>
<td>Sterilization of Hot and Cold Water System</td>
<td>14</td>
</tr>
<tr>
<td>3.00</td>
<td>Part 3: Particular specifications for fire extinguishers installations</td>
<td></td>
</tr>
<tr>
<td>3.01</td>
<td>Introduction</td>
<td>15</td>
</tr>
<tr>
<td>3.02</td>
<td>Water/CO₂ Extinguishers</td>
<td>15</td>
</tr>
<tr>
<td>3.03</td>
<td>Portable Carbon Dioxide Extinguishers</td>
<td>16</td>
</tr>
<tr>
<td>3.04</td>
<td>Dry Chemical Portable Fire Extinguisher</td>
<td>16</td>
</tr>
<tr>
<td>3.05</td>
<td>Air Foam Fire Extinguisher</td>
<td></td>
</tr>
<tr>
<td>3.06</td>
<td>Fire Blanket</td>
<td>18</td>
</tr>
<tr>
<td>3.07</td>
<td>Fire Exit Sign</td>
<td>18</td>
</tr>
<tr>
<td>3.08</td>
<td>Fire Instruction Notice</td>
<td>19</td>
</tr>
</tbody>
</table>
Part 4: Particular specifications for hose reel system

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.01</td>
<td>Introduction</td>
<td>20</td>
</tr>
<tr>
<td>4.02</td>
<td>Climatic Conditions</td>
<td>20</td>
</tr>
<tr>
<td>4.03</td>
<td>Fire Hose reel Pump</td>
<td>20</td>
</tr>
<tr>
<td>4.04</td>
<td>Pipework</td>
<td>22</td>
</tr>
<tr>
<td>4.05</td>
<td>Pipe Fittings</td>
<td>22</td>
</tr>
<tr>
<td>4.06</td>
<td>Flanges</td>
<td>22</td>
</tr>
<tr>
<td>4.07</td>
<td>Gaskets</td>
<td>22</td>
</tr>
<tr>
<td>4.08</td>
<td>Non-Return Valves</td>
<td>22</td>
</tr>
<tr>
<td>5.09</td>
<td>Gate Valves</td>
<td>22</td>
</tr>
<tr>
<td>4.10</td>
<td>Sleeves</td>
<td>22</td>
</tr>
<tr>
<td>4.11</td>
<td>Floor and Ceiling Plates</td>
<td>23</td>
</tr>
<tr>
<td>4.12</td>
<td>Hose reels</td>
<td>23</td>
</tr>
<tr>
<td>4.13</td>
<td>Earthling</td>
<td>23</td>
</tr>
<tr>
<td>4.14</td>
<td>Finish Painting</td>
<td>23</td>
</tr>
<tr>
<td>4.15</td>
<td>Testing & Commissioning</td>
<td>23</td>
</tr>
<tr>
<td>4.16</td>
<td>Instruction Period</td>
<td>23</td>
</tr>
</tbody>
</table>
PART 1: GENERAL MECHANICAL SPECIFICATION

1.01 Introduction

This section covers the general requirement for plant, equipment and materials forming part of the mechanical works and shall apply except where specifically stated elsewhere in the Specification. These works shall be as by regulations and standards.

1.02 Regulations and Standards

The Works shall comply with the current editions of the following:

a) The Kenya Government Regulations.

b) The Kenya Bureau of Standards

c) The National Environmental Management Authority Regulations.

d) The Kenya Building Code Regulations

e) Local Authority By-laws.

f) The Electricity Supply Authority By-Laws

g) British Standard and Codes of Practice as published by the British Standards Institution (BSI)

h) The United Kingdom Chartered Institute of Building Services Engineers (CIBSE) Guides.

i) The United Kingdom Institution of Electrical Engineers (IEE) Regulations for the Electrical Equipment of Buildings.

j) The United Kingdom Chartered Institute of Building Services Engineers (CIBSE) Guides.

1.03 Quality of Materials

All plant, equipment and materials supplied as part of these works shall be new and of first class commercial quality, shall be free from defects and imperfections and where indicated shall be of grades and classifications designated herein.

All products or materials shall be products of quality standards.

Materials and apparatus supplied by others for installation and connection shall be carefully examined on receipt. Any defects noted, should be brought to the attention of the Engineer.

Defective equipment or that damaged in the course of installation or tests shall be replaced as required to the approval of the Engineer.
1.04 **Electrical Requirements**

Plant and equipment supplied shall be complete with all necessary motor starters, control boards, and other control apparatus. Where control panels incorporating several starters are supplied they shall be complete with a main isolator.

The supply power up to and including local isolators shall be provided and installed by the Electrical specialist. All other wiring and connections to equipment shall form part of mechanical works.

Three copies of all schematic, cabling and wiring diagrams shall be supplied for the Engineer’s approval.

The starting current of all electric motors and equipment shall not exceed the maximum permissible starting currents of the protective switch gear.

All electrical plant and equipment supplied shall be rated for the supply voltage and frequency applicable in Kenya, that is 415 Volts, 50Hz, 3-Phase or 240Volts, 50Hz, 1-phase.

Any equipment that is not rated for the above voltages and frequencies shall be rejected by the Engineer.

1.05 **Transport and Storage**

All plant and equipment shall, during transportation be suitably packed, crated and protected to minimize the possibility of damage and to prevent corrosion or other deterioration.

On arrival at site all plant and equipment shall be examined and any damage to parts and protective priming coats made good before storage or installation.

Adequate measures shall be taken to ensure that plant and equipment do not suffer any deterioration during storage.

Prior to installation all piping and equipment shall be thoroughly cleaned.

If, in the opinion of the Engineer any equipment has deteriorated or been damaged to such an extent that it is not suitable for installation, the equipment shall be replace at supplier own cost.

1.06 **Site Supervision**

There shall be an English-speaking supervisor on the site at all times during normal working hours.
1.07 **Installation**

Installation of all special plant and equipment shall be carried out by under adequate supervision from skilled staff provided by the plant and equipment manufacturer or his appointed agent in accordance with the best standards of modern practice and to the relevant regulations and standards.

1.08 **Testing**

1.08.1 **Introduction**

The Engineer reserves the right to inspect and test or witness of all manufactured plant equipment and materials.

The right of the Engineer relating to the inspection, examination and testing of plant during manufacture shall be applicable to Insurance companies and inspection authorities so nominated by the Engineer.

The Contractor shall give two week’s notice to the Engineer of his intention to carry out any inspection or tests and the Engineer or his representative shall be entitled to witness such tests and inspections.

Six copies of all test certificates and performance curves shall be submitted as soon as possible after the completion of such tests, to the Engineer for his approval.

Plant or equipment which is shipped before the relevant test certificate has been approved by the Engineer shall be shipped at the Contractor’s own risk and should the test certificate not be approved new tests may be ordered by the Engineer at the Contractor’s expense.

The foregoing provisions relate to tests at manufacturer’s works and as appropriate to those carried out at site.

1.08.2 **Material Tests**

All material for plant and equipment to be installed under this works shall be tested, unless otherwise directed, in accordance with the relevant KS or B.S Specification concerned.

For materials where no KS or B.S. Specification exists, tests are to be made in accordance with the best modern commercial methods to the approval of the Engineer, having regard to the particular type of the materials concerned.

Specimens and performance tests and analyses to demonstrate conformance of the various materials with the applicable standards.

If stock material, which has not been specially manufactured for the plant and equipment specified is used, then satisfactory evidence to the Engineer that such materials conform to the requirements stated herein in which case tests of material may be partially or completely waived.
Certified mill test reports of plates, piping and other materials shall be deemed acceptable.

1.08.3 Manufactured Plant and Equipment – Work Tests

The rights of the Engineer relating to the inspection, examination and testing of plant and equipment during manufacture shall be applicable to the Insurance Companies or Inspection Authorities so nominated by the Engineer.

A two week’s notice shall be given to the Engineer of the manufacturer’s intention to carry out such tests and inspections.

The Engineer or his representative shall be entitled to witness such tests and inspections. The cost of such tests and inspections shall be borne by the Manufacturer.

Six copies of all test and inspection certificates and performance graphs shall be submitted to the Engineer for his approval as soon as possible after the completion of such tests and inspections.

Plant and equipment which is shipped before the relevant test certificate has been approved by the Engineer shall be shipped at the Manufacturer’s own risk and should the test and inspection certificates not be approved, new tests may be ordered by the Engineer at the manufacturer’s expense.

1.08.4 Pressure Testing

All pipework installations shall be pressure tested in accordance with the requirements of the various sections of this Specification. The installations may be tested in sections to suit the progress of the works but all tests must be carried out before the work is buried or concealed behind building finishes. All tests must be witnessed by the Engineer or his representative and a 48 hours notice to carry out such tests shall be given to Engineer.

Any pipework that is buried or concealed before witnessed pressure tests have been carried out shall be exposed and the specified tests shall then be applied.

A certificate shall be prepared for signature by the Engineer and shall keep a progressive and up-to-date record of the section of the work that has been tested.

1.09 Colour Coding

Unless stated otherwise, all pipework shall be colour coded in accordance with the latest edition of KSISO10526:1999 or B.S 1710 and to the approval of the Engineer.
1.10 **Welding galvanized pipes**

1.10.1 **Preparation**

Joints to be made by welding shall be accurately cut to size with edges sheared, flame cut or machined to suit the required type of joint. The prepared surface shall be free from all visible defects such as lamination, surface imperfection due to shearing or flame cutting operation, etc., and shall be free from rust scale, grease and other foreign matter.

1.10.2 **Method**

All welding shall be carried out by the electric arc processing using covered electrodes in accordance with KS06-206 :1981 (Confirmed 1999) or B.S. 639.

Gas welding may be employed in certain circumstances provided that prior approval is obtained from the Engineer.

1.10.3 **Welding Code and Construction**

All welded joints shall be carried out in accordance with the following Specifications:

a) **Pipe Welding**

All pipe welds shall be carried out in accordance with the requirements of B.S.806.

b) **General Welding**

All welding of mild steel components other than pipework shall comply with the general requirements of KS06-1017-2: 1995 or B.S. 1856.

1.11 **Welding PP-R pipes by means of electric coupling.**

1.11.1 **Preparation**

The surfaces of the pipes and fittings must be clean and without blemish. Ends must be clean cut at right angles.

1.11.2 **Method**

Pipes and fittings are inserted to the edge of the matrix and held steady without rotating. Once the heating has been completed the parts are extracted from the heating element and rapidly joined axially.

1.11.3 **Welding by means of coupling**

As the electric coupling can slide along the pipes, it is possible to carry out repairs and welds in any part of an existing plant. The parts to be joined must be clean free of grease and perfectly aligned. After inserting the parts to be welded in the coupling, the coupling has to be electrically connected to the welding machine.
1.12.0 **Welders’ Qualifications**

Any welder employed shall have passed the trade tests as laid down by the Government of Kenya.

The Engineer may require to see the appropriate certificate obtained by any welder and should it be proved that the welder does not have the necessary qualifications the Engineer may instruct to replace him with a qualified welder.
2.00 PART2: PARTICULAR SPECIFICATIONS FOR PLUMBING AND DRAINAGE

2.01 Introduction

This section covers the general requirements for plant, equipment and materials forming for the plumbing and drainage installations.

2.20 MATERIALS AND STANDARDS

2.2.1 Pipework and Fittings

Pipework materials are to be used shall be as follows:

a) Galvanized Steel Pipework

Galvanized steel pipe work up to 65mm nominal bore shall be manufactured in accordance with KS06.366:1982 or B.S. 1387 Medium Grade, with tapered pipe threads in accordance with B.S. 21. All fittings shall be malleable iron and manufactured in accordance with KS06-885:1995 or B.S. 143.

Pipe joints shall be screwed and socketed and sufficient coupling unions shall be allowed so that fittings can be disconnected without cutting the pipe. Running nipples and long screws shall not be permitted unless exceptionally approved by the Engineer.

Galvanized steel pipe work, 80mm nominal bore up to 150mm nominal bore shall be manufactured to comply in all respects with the specification for 65mm pipe, except that screwed and bolted flanges shall replace unions and couplings for the jointing of pipes to valves and other items of plant. All flanges shall comply with the requirements of B.S. 10 to the relevant classifications contained hereinafter under Section ‘C’ of the Specification.

Galvanizing shall be carried out in accordance with the requirements of B.S. 1387 and B.S. 143 respectively.

b) Polypropylene Pipes – Random (PP-R) Type 3

PP-R type3 pipe work shall be manufactured in accordance with B.S. 7291part 2001. Dimensions and quality of PP-R Pipes shall be in accordance with DIN 8077 and pipelines in plastics materials joints, Components parts, Installation to be in accordance DIN 16928. Joints And fittings to be in accordance DIN16962.

c) Copper Tubing

All copper tubing shall be as manufactured in accordance with B.S. 2871 from C.160 ‘Phosphorous De-oxidized Non-Arsenical Copper’ in accordance with B.S. 1172.
Pipe joints shall be made with soldered capillary fittings and connections to equipment shall be with compression fittings as manufactured in accordance with B.S. 864.

Short copper connection tubes between galvanized pipe work and sanitary fitments shall not be used because of the risk of galvanic action.

If, as may occur in certain circumstances, it is not possible to make the connection in any way than the use of copper tubing, then a brass straight connector shall be positioned between the galvanized pipe and the copper tube in order to prevent direct contact.

d) Poly-vinyl Chloride (P.V.C), Pressure Pipes and Fittings

All P.V.C. pressure pipes and fittings shall be as manufactured in accordance with KS06-478-2:1993 (B.S. 3505: 1968).

Jointing

The method of jointing to be employed shall be that of solvent welding, using the pipe and manufacturer’s approved cement. Seal ring joint shall be introduced where it is necessary to accommodate thermal expansion.

Testing

Pipelines shall be tested in sections under an internal water pressure normally one and a half times the maximum allowable working pressure of the class of pipe used. Testing shall be carried out as soon as practical after laying and when the pipeline is adequately anchored. Precautions shall be taken to eliminate all air from the test section and to fill the pipe slowly to avoid risk of damage due to surge.

e) A.B.S. Waste System

Where indicated on the Designs and Schedules, the contractor shall supply and fix A.B.S. waste pipes and fittings.

The pipes, traps and fittings shall be in accordance with the relevant British Standards, including B.S. 3943 or KS06-7831-1:1990, and fixed generally in accordance with manufacturer’s instructions and B.S. 5572: 1978.

Jointing of pipes shall be carried out by means of solvent welding, the manufacturer’s instructions according to B.S. 5572: 1978.

Standard brackets, as supplied for use with this system, shall be used wherever possible.
Where the building structure renders this impracticable the contractor shall provide purpose made supports, centers of which shall not exceed one meter.

Expansion joints shall be provided as indicated. Supporting brackets and pipe clips shall be fixed on each side of these joints.

f) **Poly-vinyl Chloride (P.V.C) Pipes and fittings**

The contractor shall supply and fix PVC soil pipes and fittings as indicated on the Designs and Schedules.

Pipes and fittings shall be in accordance with relevant British Standards, including B.S. 4514 and fixed to the manufacturer's instructions and B.S. 5572.

The soil system shall incorporate synthetic rubber gaskets as provided by the manufacturer whose fixing instructions shall be strictly adhere to.

Connections to WC pans shall be effected by the use of a WC connector, gasket and cover, fixed to suit pan outlet.

Suitable supporting brackets and pipe clips shall be provided at maximum of one metre centres.

The contractor shall be responsible for the joint into the Gully Trap on Drain as indicated on the Drawings.

2.2.2 **Valves**

a) **Draw-off Taps and Stop Valves (Up to 50mm Nominal Bore)**

Draw-off taps and valves up to 50mm nominal bore, unless otherwise stated or specified for attachment or connection to sanitary fitment shall be manufactured in accordance with the requirements of B.S.1010.

b) **Gate Valves**

All gate valves 80mm nominal bore and above, other than those required for fitting to buried water mains shall be of cast iron construction, in accordance with the requirements of B.S. 3464. All gate valves required for fitting to buried water mains shall be of cast iron construction in accordance with the requirements of B.S.1218.

All gate valves up to and including 65mm nominal bore shall be of bronze construction in accordance with the requirements of B.S. 1952.

The pressure classification of all valves shall depend upon the pressure conditions pertaining to the site of works.

c) **Globe Valves**

All globe valves up to and including 65mm nominal bore shall be of bronze construction in accordance with the requirements of B.S.3061 or KS06-885:1995.
The pressure classification of all globe valves shall depend upon the pressure conditions pertaining to the site of works.

2.2.3 **Waste Fitment Traps**

a) **Standard and Deep Seal P & S Traps**

Where standard or deep seal traps are specified they shall be manufactured in suitable non-ferrous materials in accordance with the full requirements of B.S. 1184.

In certain circumstances, cast iron traps may be required for cast iron baths and in these instances bath traps shall be provided which are manufactured in accordance with the full requirements of B.S.1291.

b) **Anti-Syphon Traps**

Where anti-syphon traps are specified, these shall be similar or equal to the range of traps manufactured by Greenwood and Hughes Limited, Deacon Works Littleshampton, Sussex, England or equal and approved.

The tradename for traps manufactured by this company is ‘Grevak’.

2.2.4 **Pipe Supports**

a) **Introduction**

This deals with pipe supports securing pipes to the structure of buildings for above ground application.

The variety and type of support shall be kept to a minimum and their design shall be such as to facilitate quick and secure fixings to metal, concrete, masonry or wood.

Consideration shall be given, when designing supports, to the maintenance of desired pipe falls and the restraining of pipe movements to a longitudinal axial direction only.

The contractor shall supply and install all steelwork forming part of the pipe support assemblies and shall be responsible for making good damage to builders work associated with the pipe support installation.

The contractor shall submit all his proposals for pipe supports to the Engineer for approval before any erection works commence.

b) **Steel and Copper Pipes and Tubes**

Pipe runs shall be secured by clips connected to pipe angers, wall brackets, or trapeze type supports. ‘U’ bolts shall not be used as a substitute for pipe clips without the prior approval of the Engineer.
An approximate guide to the maximum permissible supports spacing in metres for steel and copper pipe and tube is given in the following table for horizontal runs.

<table>
<thead>
<tr>
<th>Size Tube Nominal Bores 1387</th>
<th>Steel Tube to B.S. 659</th>
<th>Copper to B.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15mm</td>
<td>1.25m</td>
<td>2.0m</td>
</tr>
<tr>
<td>20mm</td>
<td>2.0m</td>
<td>2.5m</td>
</tr>
<tr>
<td>25mm</td>
<td>2.0m</td>
<td>2.5m</td>
</tr>
<tr>
<td>32mm</td>
<td>2.5m</td>
<td>3.0m</td>
</tr>
<tr>
<td>40mm</td>
<td>2.5m</td>
<td>3.0m</td>
</tr>
<tr>
<td>50mm</td>
<td>2.5m</td>
<td>3.0m</td>
</tr>
<tr>
<td>65mm</td>
<td>3.0m</td>
<td>3.5m</td>
</tr>
<tr>
<td>80mm</td>
<td>3.0m</td>
<td>3.5m</td>
</tr>
<tr>
<td>100mm</td>
<td>3.0m</td>
<td>4.0m</td>
</tr>
<tr>
<td>125mm</td>
<td>3.0m</td>
<td>4.5m</td>
</tr>
<tr>
<td>150mm</td>
<td>3.5m</td>
<td>4.5m</td>
</tr>
</tbody>
</table>

The support spacing for vertical runs shall not exceed one and a half times the distances given for horizontal runs.

c) Expansion Joints and Anchors

Where practicable, cold pipework systems shall be arranged with sufficient bends and changes of direction to absorb pipe expansion providing that the pipe stresses are contained within the working limits prescribed in the relevant B.S. specification.

Where piping anchors are supplied, they shall be fixed to the main structure only. Details of all anchor design proposals shall be submitted to the Engineer for approval before erection commences.

The contractor when arranging his piping shall ensure that no expansion movements are transmitted directly to connections and flanges on pumps or other items of plant.

The contractor shall supply flexible joints to prevent vibrations and other Movements being transmitted from pumps to piping systems or vice versa.
2.2.5 **Sanitary Appliances**

All sanitary appliances supplied and installed as part of the works shall comply with the general requirements of B.S. Code of Practice 305 and the particular requirements of the latest B.S. Specifications.

2.2.6 **Pipe Sleeves**

Main runs of pipework are to be fitted with sleeves where they pass through walls and floors. Generally the sleeves shall be of P.V.C. except where they pass through the structure, where they shall be mild steel. The sleeves shall have 6mm – 12mm clearance all around the pipe or for insulated pipework all around the installation.

The sleeve will then be packed with slag wool or similar.

2.3 **INSTALLATION**

2.3.1 **Introduction**

Installation of all pipework, valves, fittings and equipment shall be carried out under adequate supervision from skilled staff to the relevant codes and standards as specified herein. The contractor shall be responsible for ensuring that all builders work associated with his piping installation is carried out in a satisfactory manner to the approval of the Engineer.

2.3.2 **Above Ground Installation**

a) **Water Services**

Before any joint is made, the pipes shall be hung in their supports and adjusted to ensure that the joining faces are parallel and any falls which shall be required are achieved without springing the pipe.

Where falls are not shown or stated elsewhere in the Specification, pipework shall be installed parallel to the lines of the buildings and as close to the walls, ceilings, columns, etc., as is practicable.

All water systems shall be provided with sufficient drain points and automatic air vents to enable them to function correctly.

Valves and other user equipment shall be installed with adequate access for operation and maintenance. Where valves and other operational equipment are unavoidably installed beyond normal reach or in such position as to be difficult to reach from a small step ladder, extension spindles with floor or wall pedestals shall be provided.

Screwed piping shall be installed with sufficient number of unions to facilitate easy removal of valves and fittings, and to enable alterations of pipework to be carried out without the need to cut the pipe.

Full allowances shall be made for the expansion and contraction of pipework, precautions being taken to ensure that any force produced by the pipe movements are not transmitted to valves, equipment or plant.
All screwed joints to piping and fittings shall be made with P.T.F.E. tape. The test pressure shall be maintained by the pump for about one hour and if there is any leakage, it shall be measured by the quantity of water pumped into the main in that time. A general leakage of 4.5 litres per 25mm of diameter, per 1.6 kilometres per 24 hours per 30 metres head, may be considered reasonable but any visible individual leak shall be repaired.

b) **Sanitary Services**

Soil, waste and vent pipe system shall be installed in accordance with the best standard of modern practice as described in B.S. 5572 to the approval of the Engineer.

The contractor shall be responsible for ensuring that all ground waste fittings are discharged to a gully trap before passing to the sewer via a manhole.

All necessary rodding and inspection facilities within the draining system in positions where easy accessibility is available.

Where a branch requires rodding facilities in a position to which normal access is unobtainable, then that branch shall be extended so as to provide a suitable purpose made rodding eye in the nearest adjacent wall or floor to which easy access is available.

The vent stacks shall terminate above roof level and where stack passes through roof, a weather skirt shall be provided. The contractor shall be responsible for sealing the roof after installation of the stacks.

The open end of each stack shall be fitted with a plastic coated or galvanised steel wire guard. Access for rodding and testing shall be provided at the foot of each stack.

c) **Sanitary Appliances**

All sanitary appliances associated with the works shall be installed in accordance with the best standard of modern practice as described in C.P. 305 to the approval of the Engineer.

2.4 TESTING AND INSPECTION

2.4.1 Site Tests – Pipework Systems

a) **Above Ground Internal Water Services Installation**

All water service pipe system installed above ground shall be tested hydraulically for a period of one hour to not less than one and half times to design working pressure.

If preferred, testing the pipelines in sections may be done. Any such section found to be satisfactory need not be the subject of a further test when system has been completed, unless specifically requested by the Engineer.
During the test, each branch and joint shall be examined carefully for leaks and any defects revealed shall be made good by the Sub-contractor and the section re-tested.

All necessary precautions to be taken to prevent damage occurring to special valves and fittings during the tests. Any item damaged shall be repaired or replaced at the Sub-contractor’s expenses.

b) Above Ground Soil Waste and Ventilation System

All soil, waste and ventilating pipe system forming part of the above ground installation, shall be given appropriate test procedures as described in B.S. 5572, 1972 or KS02-254:1986

Smoke tests on above ground soil, waste and ventilating pipe system shall not be permitted.

Pressure tests shall be carried out before any work which is to be concealed is finally enclosed.

In all respects, tests shall comply with the requirements of B.S. 5572.

2.4.2 Site Test – Performance

Following satisfactory pressure test on the pipework system operational tests shall be carried out in accordance with the relevant B. S. Code of practice on the systems as a whole to establish that special valves, gauges, control, fittings, equipment and plant are functioning correctly to the satisfaction of the Engineer.

All hot water pipework shall be installed with pre-formed fibre glass lagging to a thickness of 25mm where the pipe runs above a false ceiling or in areas where the ambient temperature is higher than normal with the result that pipe “sweating”, due to condensation will cause nuisance.

All lagged pipes which run in a visible position after erection shall be given a canvas cover and prepared for painting as follows:

i) Apply a coating of suitable filler until the canvas weave disappears and allow to dry.

ii) Apply two coats of an approved paint and finish in suitable gloss enamel to colors

iii) Approved by the Engineer.

All lagging for cold and hot water pipes erected in crawlways, ducts and above false ceiling which after erection are not visible from the corridors of rooms, shall be covered with a reinforced aluminium foil finish banded in colours to be approved by the Engineer.
In all respects, unless otherwise stated, the hot and cold water installation shall be carried out in accordance with the best standard of modern practice and described in C.P.342 and C.P.310 respectively to the approval of the Engineer.

The test pressure shall be applied by means of a manually operated test pump or, in the case of long main or mains of large diameter, by a power driven test pump which shall not be left unattended. In either case precautions shall be taken to ensure that the required pressure is not exceeded.

Pressure gauges should be recalibrated before the tests.

The contractor shall be deemed to have included in his price for all test pumps, and other equipment required under this specification.

The test pressure shall be one and a half times the maximum working pressure except where a pipe is manufactured from a material for which the relevant B.S. specification designates a maximum test pressure.

2.5 **STERILISATION OF COLD WATER SYSTEM**

All water distribution system shall be thoroughly sterilized and flushed out after the completion of all tests and before being fully commissioned for handover.

The sterilisation procedures shall be carried out in accordance with the requirements of B.S. Code of Practice 301, Clause 409 and to the approval of the Engineer.
PART 3: PARTICULAR SPECIFICATIONS FOR PORTABLE FIRE EXTINGUISHER.

3.01 INTRODUCTION

The general specification details the requirements for the supply and installation and commissioning of the Portable Fire Extinguishers.

The contractor shall include for all appurtenances and appliances not necessarily called for in this specification or shown on the designs but which are necessary for the completion and satisfactory functioning of the works.

If in the opinion of the Sub-contractor there is a difference between the requirements of the Specifications and the designs, he shall clarify these differences with the Engineer before tendering.

3.02 WATER/CO₂ EXTINGUISHERS

These shall be 9-litre water filled CO₂ cartridge operated portable fire extinguishers and shall comply with B.S. 401 or B.S. 1288 or KSISO7165:1999 and to the requirements of B.S.1004. Unless manufactured with stainless steel, bodies shall have all internal surfaces completely coated with either a lead tin, lead alloy or zinc applied by hot dipping. There shall be no visibly uncoated areas.

The extinguishers shall be clearly marked with the following:

a) Method of operation.

b) The words ‘WATER TYPE’ (GAS PRESSURE) in prominent letters.

c) Name and address of the manufacturer or responsible vendor.

d) The nominal charge of the liquid in imperial gallons and litres.

e) The liquid level to which the extinguisher is to be charged.

f) The year of manufacture.

g) A declaration to the effect that the extinguisher has been tested to a pressure of 24.1 bar (350 p.s.i.).

h) The number of British Standard ‘B.S’ 1004 or B.S. 1449.
3.03 PORTABLE CARBON DIOXIDE FIRE EXTINGUISHERS

These shall be portable carbon dioxide fire extinguishers and shall comply with B.S. 1004 or KSISO7165:1999

The body of extinguisher shall be a seamless steel cylinder manufactured to one of the following British Standards; B.S. 401 or B.S. 1288 (EN3:1996)

The filling ratio shall comply with B.S. 5355 with valves fittings for compressed gas cylinders to B.S.341. Where a hose is fitted it shall be flexible and have a minimum working pressure of 206.85 bar (3000 p.s.i.). The hose is not to be under internal pressure until the extinguisher is operated.

The nozzle shall be manufactured of brass gunmetal, aluminium or stainless steel and may be fitted with a suitable valve for temporarily stopping the discharge if such means are not incorporated in the operating head.

The discharge horn shall be designed and constructed so as to direct the discharge and limit the entrainment of air. It shall be constructed of electrically non-conductive material.

The following markings shall be applied to the extinguishers:-

The words “Carbon Dioxide Fire Extinguisher” and to include the appropriate nominal gas content.

a) Method of operation.

b) The words “Re-charge immediately after use”.

c) Instructions for periodic checking.

d) The number of the British Standard B.S. 3326: 1960 or B.S. 5423.

e) The manufacturers name or identification markings

3.04 DRY CHEMICAL POWDER PORTABLE FIRE EXTINGUISHER

The portable dry powder fire extinguishers shall comply with BS 1449 or KSISO7165:1999 and BS 1004. The body shall be constructed to steel not less than the requirements of BS 1449 or aluminium to BS 1470 : 1972 (EN3: 1996) and shall be suitably protected against corrosion.

The dry powder charge shall be not-toxic and retain its free flowing properties under normal storage conditions. Any pressurizing agent used as an expellant shall be in dry state; in particular compressed air.

The discharge tube and gas tube if either is fitted shall be made of steel, brass, copper or other not less suitable material. Where a hose is provided it shall not exceed 1,060mm and shall be acid and alkali resistant.
Provision shall be made for securing the nozzle when not in use.

The extinguisher shall be clearly marked with the following information

a) The word “Dry Powder Fire Extinguisher”

b) Method of operation in prominent letters.

c) The working pressure and the weight of the powder charge in Kilogramme.

d) Manufacturers name or identification mark

e) The words “RECHARGE AFTER USE” if rechargeable type.

f) Instructions to regularly check the weight of the pressure container (gas Cartridge) or inspect the pressure indicator on stored pressure types when fitted, and remedy any loss indicated by either.

g) The year of manufacture.

h) The Pressure to which the extinguisher was tested.

i) The number of this British Standard BS 3465 or BS 5423: 1977.

j) When appropriate complete instructions for charging the extinguisher shall be clearly marked on the extinguisher or otherwise be supplied with the refill.

3.05 AIR FOAM FIRE EXTINGUISHER

These shall be of 9 litres capacity complete with refills cartridges and wall fixing brackets and complying with B.S. EN 3/BS 1449 and BS 1004 with the following specifications:-

Cylinder: to B.S. 1449 or KSISO7165:1999

Necking: to be 76mm outside diameter steel EN 3A 23/4 X 8TPI female thread.

Head cap: to be plastic moulding acetyl resin.

CO2 Cylinder: to be 75gm P.V.C coated.

Internal Finish: to be polythene lining on phosphate coating.

External finish: to be phosphated - One coat primer paint and one coat stove enamel B.S. 381 C.
4.07 FIRE BLANKET

The fire blanket shall be made from cloth woven with pre-asbestos yarn or any other fire proof material and to measure 1800 x 1210 mm and shall be fitted with special tapes folded so as to offer instantaneous single action to release blanket from storing jacket to BS 1721.

4.08 SIGNAGE - FIRE EXIT SIGN

Proceed and procure and install as below;

Print Fire Exit signs on the Perspex plate, 5mm thick, with white colour background as follows:-

1. Lettering IN RED COLOUR of not less than 50mm in height.

2. A pendant sign bearing words, FIRE EXIT and with a directional arrow.

The sign must be capable of being read from both approaches to exit and so is double sided.

4.09 SIGNAGE - FIRE INSTRUCTION NOTICE

Print fire instruction on the Perspex plate, 5mm thick with White Colour Background measuring 510mm lengthx380mm width as follows;
FIRE INSTRUCTION NOTICE

In the event of fire;

(1) Raise the alarm by actuating the nearest alarm system point, Sound Siren /gong or Shout Fire

(2) Attack fire using the nearest available equipment

(3) Call fire Brigade 222181 or Police 999 and inform your switchboard (PABX) Operator

(4) Ensure that all personnel not involved in fire fighting evacuation to safety outside the building.

(5) Close but DO NOT LOCK doors behind as you leave.

(6) Evacuate the building using stairs or fire escapes do not use Lifts/escalators walk calmly. Avoid panic. Do not stop or return for personal belongings.

(7) Assemble as per floor outside the building for roll call.
4.00 PART 4: PARTICULAR SPECIFICATIONS FOR THE SUPPLY, INSTALLATION AND COMMISSIONING OF THE HOSE REEL SYSTEM

4.01 Introduction

The general specification details the requirements for the supply, installation and commissioning of the hose reel installation. The hose reel installation shall comply in all respects to the requirements set out in C.O.P. 5306 PART 1 : 1976, AND BS 5274.

4.02 Climatic Conditions

a) The following climatic condition apply at the site of the works and all plant, equipment, apparatus, materials and installations shall be suitable for these conditions.

b) Where not otherwise stated, all ratings of plant, equipment, apparatus shall be interpreted as site rating and NOT sea level or other ratings.

c) Maximum temperature oC

d) Minimum Temperature oC

e) Average Temperature oC – oC

f) Range of Relative Humidity – %

g) Altitude M

h) Latitude o’S

i) Longitude o’E

j) Rainfall extremely heavy at certain period of the year.

4.03 Fire Hosereel Pumps

The fire pumpset shall be a fully automatic package unit. The unit shall consist of pumps of appropriate duty at a given head. The complete specification of the package pump set to be as follows:

a) PUMPS (Specify)

b) PUMP MATERIALS

Suction and Discharge Casing to be made Grey Iron. Shafts, conveyors, diffusers, impellers and the external elements made from Stainless Steel.
c) **MOTORS**
 (specify)

d) **MECHANICAL SEAL**
 (specify)

e) **BASEFRAME**
Welded fabrication from Mild Steel sections. With facility for lifting unit.

f) **PIPEWORK**
Medium gauge Galvanized Pipework to B.S. 1387 and Galvanized fittings to B.S. 143/1256. All Pipework to terminate with B.S. 4504 NP. 16 Flanges. Flexible connections to be affixed to suction and discharge connections.

g) **VALVE**
Pump Isolating Valves, Butterfly valve to B.S. 5155 with Cast Iron nylon coated disc and black airtrile liner. Non-Return Valve vertical lift type to be manufactured from Cast Iron with nitrile seal.

h) **CONTROL PANEL**
Standard Panel cubicle to be manufactured to IP. 55 standards, containing Starters of appropriate ratings
Panel to include power On Light, Run and Trip Lights, Hand/Off/Auto switches, duty pump selector switch, disconnect switch and line and control circuit fuses, Switches to conform to IP. 54.
Safety features to include 24 volts low voltage controls except for starter coils. Panel mounted on vibration isolators to minimize vibration to electrical equipment.

i) **PRESSURE SWITCH:**
Differential adjustment type switch manufactured to IP.14 standards.
Multi-pump sequencing control to be affected from a single pressure instrument, utilizing control circuitry specially for pressure boosting applications.

j) 4” Dial Bottom Connection to B.S. 1780 calibrated in Bars and KPa..

K) **MEMBRANE TANK**
Fabricated Steel construction housing a natural rubber diaphragm, ideally suited for drinking water applications. Precharged with Nitrogen to correct pressure at test stage.
The panel shall incorporate HRC main fuses and thermal overloads for the pump motors, timer control unit for minimum run period, start relay incorporating timing element for standby pump delay and one set of voltage free changeover contacts to give remote alarm/indication for the indicator lights motioned.

L) Pipework

The Pipework for the hose reel installation shall be galvanized wrought steel tubing “Medium” Grade Class “B” to BS 1387:1967 with pipe threads to BS 21.

M) Pipe Fittings

The pipe fittings shall be wrought steel pipe fittings welded or seamless fittings conforming to BS 1740 Part 1971 or malleable iron fittings to BS 143.

All changes in direction will be standard bends or long radius fittings. No. elbows will be permitted.

N) Flanges

The flanges shall comply with BS 4504 : 1969. All flanges shall comply to a nominal pressure rating of 16 bar (P.N. 16) and shall be of either cast iron or steel.

O) Gaskets

The gaskets for the use with flanges to BS 4304 : 1969 shall comply with BS 4865 part 1 : 1072 for pressure up to and not exceeding 64 bar.

P) Non-return Valves

The non-return valves up to and including 80mm diameter shall be to BS 5153 : 1974 with flanges to BS 4504 P.N. 16.

Q) Gate Valves

The gate valves upto and including 80mm shall be as Crane NO. D151 non-rising stem and wedge disc to BS 21 taper thread.

R) Sleeves

Where pipework passes through walls, floors or ceilings, a sleeve shall be provided one diameter larger than the diameter of the pipe, the space between to be packed with mineral wool, to the Engineer’s approval.

S) Floor and ceiling plates

Where pipe pass through floors, walls or ceilings, floor, wall and ceiling plates shall be secured around the pipe. The plates shall be of stainless steel construction and will serve no other purpose than to present a net finish, to the exposed installation.
T) **Hosereels**

The hosereels to the installation shall consist of recess and no-recess automatic hosereels.

All the above hosereels shall comply with BS 5274 : 1976 and BS 3169 : 1970 and is to requirements C.P. 5306 Part I : 1976.

The hosereels shall be supplied and installed complete with first-aid non-kinking hose 30 metres long, with nylon spray/jet/shut-off nozzle fitted. A screw down chrome plated globe valve to BS 1010 to the inlet to the reel.

The prifice to the nozzle is to be not less than 4.3 mm to maintain a minimum flow of 0.4L/s to the jet.

U) **Earthing**

The Hosereel installation shall be electrically earthed by a direct earth connection.

V) **Finish Painting**

Upon completion of testing and commissioning of the hosereel installation the pipework shall be primed and finish painted with 2 No. coats of paint to the Engineer’s requirements.

W) **Testing and Commissioning**

The hosereel system is to be flushed out before testing to ensure that no builders debris has entered the system. The system is to be then tested to one and half times the working pressure of the installation to the approval of the Engineer. Simulated fault condition of the pumping equipment, is to be carried out before acceptance of the system by the Engineer and Architect.

X) **Instruction Period**

The Sub-Contractor shall allow in his contract sum for instructing of use of the equipment to the clients maintenance staff. The period of instruction may be within the contract period but may also be required after the contract period has expired.

The period of time required shall be stipulated by the Client but will not exceed seven days in which time the Clients staff shall be instructed in the operation and maintenance of the equipment.
GENERAL SPECIFICATIONS
FOR
KITCHEN EQUIPMENT
AND
L P GAS INSTALLATIONS

ISSUED BY:
CHIEF ELECTRICAL & MECHANICAL ENGINEER (BS)
MINISTRY OF PUBLIC WORKS
P.O. BOX 41191,
NAIROBI.

1ST EDITION (2008)
GENERAL SPECIFICATION
FOR
L.P. GAS INSTALLATIONS
GENERAL SPECIFICATION FOR L.P. GAS INSTALLATIONS

A GENERAL

The specification covers the storage and transmission of liquefied petroleum gas (L.P.G) which refers to butane, propane or a mixture of both stored in liquid form under pressure. When mixed with air at atmospheric pressure, the gas requires a concentration of 2% of the vapour for ignition to take place. The percentage fill in the storage vessel is about 85%.

B REGULATIONS AND STANDARDS

Material, equipment, installations and workmanship shall comply with the requirements of the latest Editions of the following:

(a) Kenya Government By-laws.
(b) Relevant standards published by the Kenya Bureau of Standards.
(c) Relevant British Standards, Specifications & Codes of Practice; referred to as B.S.&B.S.C.P respectively in this document.
(d) Requirements of the clients proposed local L.P Gas Supplier.
(e) This specification and the contract drawings.

C L.P.GAS BULK STORAGE TANKS

The L.P Gas bulk storage tank shall be of either vertical or horizontal cylindrical mild steel construction manufactured from rolled carbon steel plate, welded together in compliance with the requirements of KS 200:2002 and BS 5500 or ASME (American Society of mechanical Engineers) Codes. The tank shall be earthed to protect against accumulation of static electricity.

The storage tank shall have the following minimum pressure requirements:-

Test Pressure: 25 bars
Working pressure: 9 bars at 20° c

A test certificate shall be provided with the tank. It shall contain details such as the Standards to which the tank has been manufactured, tests done, results of such tests, etc.
The tank shall be supplied complete with:

(a) Filing valve, take off connection with first stage regulator, Pressure relief valve, Pressure gauge and magnetic float gauge, all housed under a lockable-hinged cover, forming integral part of the tank.

(b) Drain plug.

(c) Main isolating Valve.

(d) Lifting lugs welded at both ends of the tank

(e) Mounting feet welded to the base of tank. These shall be used to bolt the tank to a concrete base to secure it.

The tank shall be pickled and primed on the outside and painted with two coats of weather resistant paint. It shall also have a stamp showing the supplier, test pressure and the date of testing.

The tanks are manufactured in various sizes but the following are the standard sizes used in commercial kitchen applications.

<table>
<thead>
<tr>
<th>Tank capacity</th>
<th>Diameter</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 Ton</td>
<td>1000mm</td>
<td>2000mm</td>
</tr>
<tr>
<td>1.0 Ton</td>
<td>1000mm</td>
<td>3000mm</td>
</tr>
<tr>
<td>2.0 Ton</td>
<td>1220mm</td>
<td>4100mm</td>
</tr>
</tbody>
</table>

Apart from the above minimum specification for the bulk L.P Gas storage tank, any additional requirements may be specified by the L.P. Gas supplier.

The vertical cylinder shall be fitted with a discharge isolation valve, pressure relief valve. Where there is a multiple cylinder bank installation, an automatic change-over valve with a regulator to reduce pressure to 37 mbar shall be incorporated. Tank sizes are determined by the LPG dealers and they are available in various sizes.

Each tank shall be identified with the following minimum information, permanently marked on the tank shell or imprinted on a stainless steel name plate affixed to the tank in a position normally accessible through the inspection chamber:

« The name of the Vendor
« The construction standard to which the tank is built
« A reference number unique to the tank
« The date of manufacture
« The tank capacity
D PIPEWORK

Pipes and gas manifolds for L.P. Gas installations shall be galvanized mild steel tubing to B.S. 1387: Class C with Pipe threads to B.S. 21 or copper pipes to B.S 2871 with compression fittings to B.S 864. Only P.T.F.E tape or jointing compound specifically made for LPG shall be used. Use of hemp shall not be allowed.

The L.P. Gas pipe work installation shall comply with the requirements of B.S.C.P. 331: Part 3.

Pipe fittings shall be either welded or seamless wrought steel pipe fittings to B.S. 1740: Class C. A union shall be provided on all straight runs of pipe work at a maximum interval of six meters.

Pipe work laid under ground shall be wrapped with pipe wrapping material having vapour permeability of less than 0.11g/m²/d at 25°C and 75% relative humidity. The pipe wrapping material shall have high resistance to mineral acids, alkalis and salts and shall be on non-cracking and non-hardening characteristics.

Under ground L.P. Gas distribution pipe work shall be laid to a slope of 1 in 200. Gas service pipes, from the gas distribution pipes to the parts of building they service, shall be laid to rise from the distribution pipe at a slope of 1 in 200. All pipes under the ground shall rest throughout their length on a 150mm deep, flue sand topping, followed by an approved backfilling.

Where the pipe passes through the building fabric, it shall be located within a pipe sleeve, one diameter larger than the pipe passing through it. The void between the pipe and the sleeve shall be packed with bitumen or approved equal material.

Horizontal and vertical pipes within the building shall be fixed off the walls with brass built brackets or spacer type steel pipe clips. The pipe supports spacing intervals for both the horizontal and vertical pipe runs shall be as follows:

<table>
<thead>
<tr>
<th>Pipe nominal diameter:</th>
<th>15mm</th>
<th>Interval: 1.82 metres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 & 25mm</td>
<td>2.44 metres</td>
</tr>
<tr>
<td></td>
<td>32 & 40mm</td>
<td>2.75 metres</td>
</tr>
<tr>
<td></td>
<td>50mm</td>
<td>3.00 metres</td>
</tr>
<tr>
<td></td>
<td>65mm</td>
<td>3.65 metres</td>
</tr>
</tbody>
</table>

The pipe work underneath the tables worktops to which shall be connected the gas outlets shall be made from gas quality copper. Pipework shall be bonded in accordance with I.E.E regulations.

E GAS ISOLATION VALVES

The L.P. Gas isolation valves shall be quarter turn; lever operated ball valve of brass or stainless steel construction. The valve shall have “open” and “closed” positions clearly marked on the valve body.
TANK SITING AND SAFETY

I) SITING
The position of the tank shall not be less than 7 meters away from adjacent buildings. It shall be the responsibility of others to construct a concrete plinth constructed to structural engineer’s specifications to support the tank. The tank should not be sited in a location known to be susceptible to flooding.

II) SAFETY

A 1.8m high fence with lockable gates around the cylinders to protect them shall be provided. The fence shall be at least 1.5 m away from the tank. A crash barrier shall also be erected at 2 meters from the fence to stop any vehicles from the access road crashing into the facility.

Two approved NON-SMOKING OR NAKED LIGHTS notices in red background shall be fixed on the surrounding fence. They shall be of such a size that can be read from a distance of 20 meters.

A portable carbon dioxide fire extinguishers and shall comply with B.S. EN 3/BS 1449 and B.S. 1004. shall be mounted on the fence next to the entrance.

TESTING AND COMISSIONING

The whole pipe work system shall be pressure tested using compressed air. The test pressure shall be 7.0 bars. When this pressure is achieved, the pipework shall be uniformly coated with a soap solution. Particular attention should be paid to all connection points. Leaks shall be detected by the presence of bubbles. If bubbles are found around fittings, the fittings should be checked for tightness and repaired as necessary.

The pressure test on pipe work shall be made before any part of the pipe work is concealed in any manner.

The test pressure shall be maintained for a period of six hours. If the pressure drops during this period, leaks in the pipe work shall be made good and the pressure test repeated for a further six hours.

The bulk gas storage tank shall be pressure tested using compressed air and soap solution. Test pressure of 25 bars shall be applied and soap solution applied uniformly on the entire surface of the tank. If leaks are detected in seams or the shell, notify the tank Vendor. After completion of pressure tests and installation, the L.P. Gas installations shall be balanced to give the required gas flows at each gas user’s point.
GENERAL SPECIFICATIONS
FOR
LAUNDRY EQUIPMENT
GENERAL SPECIFICATIONS FOR LAUNDRY EQUIPMENT

A GENERAL

These are general specifications of various laundry equipment. Details that are particular to a project like power ratings, gas consumption and sizes have not been included. These shall be specified at design stage for particular projects either in these specifications or in the bills of quantities.

B WASHER EXTRACTOR

Front loading washer extractor complying with KS ISO 10472-1/2:1997 and constructed and equipped as follows:

- Heavy gauge stainless steel ribbed drum with the door interlocked such that the drum shall not rotate while the door is open. The drum shall be such that should an out of balance situation arise during extraction, the drum shall stop for re-distribution of linen. It shall also be possible to open door in case of power failure.
- Stainless steel body panels, treated for sound proofing
- Heavy duty cast iron frame
- Programmable Microprocessor controls for washing of various types of linen
- Adjustable electronic thermostat and timer
- Stainless steel soap dispenser.
- Water level control
- Continuously rated motor(s) with thermal protection.
- Power fluctuation protection device in-built into machine
- Water inlet and drain valves
- Steam inlet connection (For steam heated machines)
- Noise levels at 70 dB or less.

The extractor shall be constructed such that there shall be minimal vibrations transmitted to the floor. All bearings shall be factory lubricated and sealed.

The drum volume and capacity in kilogrammes, extraction speed mode of heating and power ratings shall be as specified. The machine shall be rated for 415V, 50 HZ or 240V 50Hz supply with proper earthing. Its external dimensions shall be as specified.

C TUMBLE DRYER

Front loading Tumble dryer complying with KS ISO 10472-4:1997 constructed and equipped as follows:

- Stainless steel drum and door. The door shall have a switch to stop a drying cycle when it’s opened.
- Axial air flow through the drum, with drum perforations at the front and rear only.
- A lint filter.
- Programmable Microprocessor controls with features such as drying and cool down time, temperature control, moisture control and status indicator lights
- Continuously rated motors with thermal protection.
Power fluctuation protection device in-built into machine
Steam inlet connection (For steam heated machines)

The dryer shall be constructed such that there shall be minimal vibrations transmitted to the floor. All bearings shall be factory lubricated and sealed.

The drum volume and capacity in kilogrammes, mode of heating and power ratings shall be as specified. The machine shall be rated for 415V, 50 HZ or 240V 50Hz supply with proper earthing. Its external dimensions shall be as specified.

D CHEST IRONER

This unit shall be cylinder type return feed ironer complying with KS ISO 10472-5:1997.
It shall be constructed and equipped as follows:-
- Stainless steel ironing roller and galvanized steel body
- Finger guard covering entire length of heating roller bed
- Emergency stop
- Variable temperature control
- Roller Motor speed control. The motor shall have thermal protection.
- It shall be equipped with an exhaust fan.

The roller drum diameter and length and power ratings shall be as specified. The machine shall be rated for 415V, 50 HZ or 240V 50Hz supply with proper earthing. Its external dimensions shall be as specified.
REPUBLIC OF KENYA

MINISTRY OF PUBLIC WORKS

GENERAL SPECIFICATIONS

FOR

ELECTRICAL WORKS

ISSUED BY:

CHIEF ELECTRICAL & MECHANICAL ENGINEER (BS)
MINISTRY OF PUBLIC WORKS
P.O. BOX 41191,
NAIROBI.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION D: General Specifications of Materials and Works</td>
<td>D/1--D/22</td>
</tr>
<tr>
<td>SECTION E: Schedule of Contract Drawings</td>
<td>E/1</td>
</tr>
<tr>
<td>SECTION F: Particular Specifications of Materials and Works</td>
<td>F/1--F/3</td>
</tr>
<tr>
<td>SECTION G: Schedule of Unit Rates</td>
<td>G/1--G/2</td>
</tr>
<tr>
<td>SECTION H: Bills of Quantities</td>
<td>H/1--H/21</td>
</tr>
<tr>
<td>SECTION I: Technical Schedule of Items to be Supplied</td>
<td>I/1--I/2</td>
</tr>
</tbody>
</table>
SECTION D

GENERAL SPECIFICATION
OF
MATERIALS AND WORKS
GENERAL SPECIFICATIONS OF MATERIALS AND WORKS

2.1 General
2.2 Standard of Materials
2.3 Workmanship
2.4 Procurement of Materials
2.5 Shop Drawings
2.6 Record Drawings
2.7 Regulations and Standards
2.8 Setting out Works
2.9 Position of Electrical Plant and Apparatus
2.10 M.C.B Distribution Panels and Consumer Units
2.11 Fused Switchgear and Isolators
2.12 Conduits and Conduit Runs
2.13 Conduit Boxes and Accessories
2.14 Labels
2.15 Earthing
2.16 Cables and Flexible Cords
2.17 Armoured PVC Insulated and Sheathed Cables
2.18 Cable Supports; Markers and Tiles
2.19 PVC Insulated Cables
2.20 Heat Resisting Cables
2.21 Flexible Cords
2.22 Cable Ends and phase Colours
2.23 Cable Insulation Colours
2.24 Sub-circuit Wiring
2.25 Space Factor
2.26 Insulation
2.27 Lighting Switches
2.28 Sockets and Switched sockets
2.29 Fused Spur Boxes
2.30 Cooker Outlets
2.31 Connectors
2.32 Lampholders
2.33 Lamps
2.34 lighting Fittings Street lighting Lanterns
2.35 Position of Points and Switches
2.36 Street/Security Lighting Columns
2.37 Timing Control Switch
2.38 Wiring System for Street Lighting
2.39 Metal control Pillar
2.40 Current Operated Earth leakage circuit breaker
2.41 MV Switchboard
2.42 Steel Conduits and Steel Trunking
2.43 Testing on Site
2.1 **SHOP DRAWINGS**

Before manufacture or Fabrication is commenced the sub-contractor shall submit Two copies of detailed drawings of all control pillars, meter cubicles, medium voltage switchboards including their components showing all pertinent information including sizes, capacities, construction details, etc, as may be required to determine the suitability of the equipment for the approval of the Engineer. Approval of the detailed drawings shall not relieve the sub-contractor of the full responsibility of errors or the necessity of checking the drawings himself or of furnishing the materials and equipment and performing the work required by the plans and specifications.

2.2 **RECORD DRAWINGS**

These diagrams and drawings shall show the completed installation including sizes, runs and arrangements of the installation. The drawings shall be to scale not less than 1:50 and shall include plan views and section.

The drawings shall include all the details which may be useful in the operation, maintenance or subsequent modifications or extensions to the installation.

Three sets of diagrams and drawings shall be provided, all to the approval of the Engineer.

One coloured set of line diagrams relating to operating and maintenance instructions shall be framed and, mounted in a suitable location.

2.3 **REGULATIONS AND STANDARDS**

All work executed by the Sub-contractor shall comply with the current edition of the “Regulations” for the Electrical Equipment of Buildings, issued by the Institution of Electrical Engineers, and with the Regulations of the Local Electricity Authority.

Where the two sets of regulations appear to conflict, they shall be clarified with the Engineers. All materials used shall comply with relevant Kenya Bureau of Standards Specification.
2.4 **SETTING OUT WORK**

The sub-contractor at his own expenses; is to set out works and take all measurements and dimensions required for the erection of his materials on site; making any modifications in details as may be found necessary during the progress of the works, submitting any such modifications or alterations in detail to the Engineer before proceeding and must allow in his Tender for all such modifications and for the provision of any such sketches or drawings related thereto.

2.5 **POSITIONS OF ELECTRICAL PLANT AND APPARATUS**

The routes of cables and approximate positions of switchboards etc, as shown on the drawings shall be assumed to be correct for purpose of Tendering, but exact positions of all electrical Equipment and routes of cables must be agreed on site with the Engineer before any work is carried out.

2.6 **MCB DISTRIBUTION PANELS AND CONSUMER UNITS**

All cases of MCB Panels and consumer units shall be constructed in heavy gauge sheet with hinged covers.

Removable undrilled gland plates shall be provided on the top and bottom of the cases. Miniature circuit breakers shall be enclosed in moulded plastic with the tripping mechanism and arc chambers separated and sealed from the cable terminals.

The operating dolly shall be tripfree with a positive movement in both make and break position. Clear indication of the position of the handle shall be incorporated.

The tripping mechanism shall be on inverse characteristic to prevent tripping in temporary overloads and shall not be affected by normal variation in ambient temperature.

A locking plate shall be provided for each size of breaker; A complete list of circuit details on typed cartridge paper glued to stiff cardboards and covered with a sheet of perspex, and held in position with four suitable fixings, shall be fitted to the inner face of the lids of each distribution panel. The appropriate MCB ratings shall be stated on the circuit chart against each circuit in use: Ivorine labels shall be secured to the insulation barriers in such a manner as to indicate the number of the circuits shown on the circuit chart. Insulated barriers shall be fitted between phases, and neutrals in all boards, and to shroud live parts.

Neutral cables shall be connected to the neutral bar in the same sequence as the phase cables are connected to the MCB’s. This shall also apply to earth bars when installed.
2.7 FUSED SWITCHGEAR AND ISOLATORS
All fused switchgear and isolators whether mounted on machinery, walls or industrial panels shall conform to the requirements of KS 04 – 226 PART: 1: 1985.
All contacts are to be fully shrouded and are to have a breaking capacity on manual operations as required by KS 04 – 182 : 1980.
Fuse links for fused switches are to be of high rupturing capacity cartridge type, conforming to KS 04 – 183 : 1978. Isolators shall be load breaking/fault making isolators.

Fused switches and isolators are to have separate metal enclosures. Mechanical interlocks are to be provided between the door and main switch operating mechanism so arranged that the door may not be opened with the switch in the ‘ON’ position. Similarly; it shall not be possible to close the switch with the door open except that provision to defeat the mechanical interlock and close the switch with the door in the open position for test purposes. The ‘ON’ and ‘OFF’ positions of all switches and isolators shall be clearly indicated by a mechanical flag indicator or similar device. In T.P & N fused switch units, bolted neutral links are to be fitted.

2.8 CONDUITS AND CONDUIT RUNS
Conduit systems are to be installed so as to allow the loop-in system of wiring:

All conduits shall be black rigid super high impact heavy gauge class ‘A’ PVC in accordance with KS 04 – 179: 1988 and IEE Regulations. No conduit less than 20mm in diameter shall be used anywhere in this installation.

Conduit shall be installed buried in plaster work and floor screed except when run on wooden or metal surface when they will be installed surface supported with saddles every 600mm. Conduit run in chases shall be firmly held in position by means of substantial pipe hooks driven into wooden plugs. The Sub-contractors attention is drawn to the necessity of keeping all conduits entirely separate from other piping services such as water and no circuit connections will be permitted between conduits and such pipes. All conduits systems shall be arranged wherever possible to be self-draining to switch boxes and conduit outlet points for fittings: The systems, when installed and before wiring shall be kept plugged with well fitting plugs and when short conduit pieces are used as plugs, they shall be doubled over and tied firmly together with steel wire; Before wiring all conduit systems shall be carried out until the particular section of the conduit installation is complete in every respect.
The sets and bends in conduit runs are to be formed on site using appropriate size bending springs and all radii of bends must not be less than 2.5 times the outside diameter of the conduit. No solid or inspection bends, tees or elbows will be used.

Conduit connections shall either be by a demountable (screwed up) assembly or adhesive fixed and water tight by solution. The tube and fittings must be clean and free of all grease before applying the adhesive. When connections are made between the conduit and switch boxes, circular or non-screwed boxes, care shall be taken that no rough edges of conduit stick out into the boxes.

Runs between draw in boxes are not to have more than two right angle bends or their equivalent. The sub-contractor may be required to demonstrate to the Engineers that wiring in any particular run is easily withdrawable and the sub-contractor may, at no extra cost to the contract; be required to install additional draw-in boxes required. If conduit is installed in straight runs in excess of 6000mm, expansion couplings as manufactured by Egateube shall be used at intervals of 6000mm.

Where conduit runs are to be concealed in pillars and beams, the approval of the Structural Engineer, shall be obtained. The sub-contractor shall be responsible for marking the accurate position of all holes, chases etc, on site, or if the Engineer so directs, shall provide the Main Contractor with dimensional drawings to enable him to mark out and form all holes and chases. Should the sub-contractor fail to inform the main contractor of any inaccuracies in this respect they shall be rectified at the sub-contractors expense.

It will be the Sub-contractors responsibility to ascertain from site, the details of reinforced concrete or structural steelwork and check from the builder’s drawings the positions of walls, structural concrete and finishes. No reinforced concrete or steelwork may be drilled without first obtaining the written permission of the Structural Engineer.

The drawings provided with these specifications indicate the appropriate positions only of points and switches, and it shall be the Sub-Contractors responsibility to mark out and centre on site the accurate positions where necessary in consultation with the Architect and the Engineer. The sub-contractor alone shall be responsible for the accuracy of the final position.

2.13 CONDUIT BOXES AND ACCESSORIES

All conduit outlets and junction boxes are to be either malleable iron and of standard circular pattern of the appropriate type to suit saddles being used or super high impact PVC manufactured to KS 04 – 179 : 1983.
Small circular pattern boxes are to be used with conduits up to and including 25mm outside diameter. Rectangular pattern adaptable boxes are to be used for conduits of 32mm outside diameter and larger. For drawing in of cables in exposed runs of conduit, standard pattern through boxes are to be used:

Boxes are to be not less than 50mm deep and of such dimensions as will enable the largest appropriate number of cables for the conduit sizes to be drawn in without excessive bending.

Outlet boxes for lighting fittings are to be of the loop-in type where conduit installation is concealed and the sub-contractor shall allow one such box per fitting, except where fluorescent fittings are specified when two such boxes per fitting shall be fitted flush with ceiling and if necessary fitted with break joint rings. Pattresses shall be fitted where required to outlets on surface conduit runs.

Adaptable boxes are to of PVC or mild steel (of not less than 12swg) and black enamelled or galvanised finish according to location. They shall be of square or oblong shape. They shall be of square or oblong shape complete with lids secured by four 2 BA brass roundhead screws; No adaptable box shall be less than 75mm x 75mm x 50mm or larger than 300mm x 300mm x 75mm and shall be adequate in depth in relation to the size of conduit entering it. Conduits shall only enter boxes by means of conduit bushes.

2.14 LABELS
Labels fitted to switches and fuseboards:–

(i) Shall be Ivorine engraved black on white.

(ii) Shall be secured by R.H brass screws of same manufacturing throughout.

(iii) Shall be indicated on switches:–
 a) Reference number of switch
 b) Special current rating
 c) Item of equipment controlled

(iv) Shall indicate on MCB panels
 a) Reference number
 b) Type of board, i.e.; lighting, sockets, etc.,
 c) Size of cable supplying panel
 d) where to isolate feeder cable

(v) Shall be generally not less than 75mm x 50mm.
2.15 EARTHING

The earthing of the installation shall comply with the following requirements:-

(i) It shall be carried out in accordance with the appropriate sections of the current edition of the Regulations, for the Electrical Equipment of Buildings issued by Institute of Electrical Engineers of Great Britain.

(ii) At all main distribution panels and main service positions a 25mm x 3mm minimum cross sectional area Copper tape shall be provided and all equipment including the lead sheath and armouring of cables, distribution boards and metal frames shall be bonded thereto.

(iii) The earth tape in Sub-clause (ii) shall be connected by means of a copper tape or cable of suitable cross sectional area to an earth electrode which shall be a copper earth rod (see later sub-clause).

(iv) All tapes to be soft high conductivity copper, untinned except where otherwise specified and where run underground on or through walls, floors, etc., it shall be served with corrosion resisting tape or coated with corrosion compound and braided.

(v) Where the earth electrode is located outside the building a removable test link shall be provided inside the building as near as possible to the point of entry to the tape, for isolating the earth electrode for testing purposes.

(vi) Earthing of sub-main equipment shall be deemed to be satisfactory where the sub-main cables are M.I.C.S. or conduit with separate earth wire, and installation is carried out in accordance with the figures stated in the current edition of the I.E.E Regulations.

(vii) Where an earth rod is specified (see Sub-clause (iii) it shall be proprietary manufacture, solid hand drawn copper of 15mm diameter driven into the ground to a minimum depth of 3.6m. It shall be made up to 1.2m sections with internal screw and socket joints and fitted with hardened steel tip and driving cap.

(viii) Earth plates will not be permitted.

(ix) Where an earth rod is used the earth resistance shall be tested in the manner described in the current edition of the IEE Regulations, by the Sub-Contractor in the presence of the Engineer and the Sub-Contractor shall be responsible for the supply of all test equipment.

(x) Where copper tape is fixed to the building structure it shall be by means of purpose made non-ferrous saddles which space the conductor away from the structure a minimum distance of 20mm. Fixings shall be made using purpose made plugs; No fixings requiring holes to be drilled through the tape will be accepted.

(xi) Joints in copper tape shall be tinned before assembly riveted with a minimum of two copper rivets and seated solid.
Where holes are drilled in the earth tape for connection to items of equipment the effective cross sectional area must not be less than required to comply with the IEE regulations.

Bolts, nuts and washers for any fixing to the earth tape must be of non-ferrous material.

Attention is drawn to the need for the earthing metal parts of lighting fittings and for bonding ball joint suspension in lighting fittings.

2.16 CABLES AND FLEXIBLE CORDS

All cables used in this Sub-Contract shall be manufactured in accordance with the current appropriate Kenya standard Specification which are as follows:

- P.V.C. Insulated Cables and Flexible Cords Ks 04-192:1988
- PVC Insulated Armoured Cables Ks 04-194:1990
- Armouring of Electric cables Ks 04-290:1987

The successful Sub-Contractor will, at the Engineers discretion be required to submit samples of cables for the Engineers approval; the Engineer reserves the right to call for the cables of an alternative manufacture without any extra cost being incurred.

P.V.C. insulated cables shall be 500/1000 volt grade. No cables smaller than 1.5mm² shall be used unless otherwise specified. The installation and the finish of cables shall be as detailed in later clauses. The colour of cables shall conform with the details stated in the “Cable Braid and insulation Colours” Clause.

2.17 ARMoured P.V.C. INSULATED AND SHEATHED CABLES:

Shall be 600/1000 volt grade manufactured to Ks 04-194:1988 and Ks 04-187/188 with copper stranded conductors.

The wire armour of the cable shall be used wholly as an earth continuity conductor and the resistance of the wire armour shall have a resistance not more than twice of the largest current carrying conductor of the cable.

P.V.C./S.W.A./P.V.C. cables shall be terminated using “Telecom” “B” type or approved equal or approved equal glands and a P.V.C. tapered sleeve shall be provided to shroud each gland.
Where cables rise from floor level to switchgear etc., they shall be protected by P.V.C. conduit, to a height of 600mm from finished floor level, whether the cable is run on the surface or recessed into the wall.

2.18 **CABLE SUPPORTS, MARKERS AND TILES**

All PVC/SWA/PVC cables run inside the building shall be fixed in rising ducts or on ceilings by means of die cost cables hooks or clamps, or appropriate size to suit cables, fixed by studs and back nuts to their channel sections. Alternatively, fixing shall be by BICC claw type cleating system with die-cast cleats and galvanized mild steel back straps or similar approved equal method. For one or two cables run together the cleats shall be fixed a special channel section supports or backstraps described above which shall in turn be secured to walls or ceilings of ducts by rawbolts.

In excessively damp or corrosive atmospheric conditions special finishes may be required and the Sub-contractor shall apply to the Engineer for further instructions before ordering cleats and channels for such areas.

The above type of hooks and clamps and channels or cleats and blackstraps shall also be used for securing cables in vertical ducts.

Cables supports shall be fixed at 600mm maximum intervals, the supports being supplied and erected under this Sub-contract. Saddles shall not be used for supporting cables nor any other type of fixing other than one of the two methods described above or other system which has received prior approval of the Engineer;

Cables are to be kept clear of all pipe work and the Sub-contractor shall work in close liaison with other services Sub-contractors.

The Sub-Contractor shall include for the provision of fixing of approved type coloured slip on cables end markers to indicate permanently the correct phase and neutral colours on all ends.

Provision shall be made for supplying and fixing approved non-corrosive metal cable markers to be attached to the outside of all PVC/SWA/PVC cables at 15mm intervals indicating cable size and distinction.

Where PVC/SWA/PVC cables are outside the building they shall be laid underground 750mm deep with protecting concrete interlocking cover tiles laid over which shall be provided and laid under this Sub-contract.

All necessary excavations and reinstatement of ground including sanding or trenches will be carried out by the Sub-Contractor, unless otherwise stated.
2.19 PVC INSULATED CABLES
Shall be of non-braided type as CMA reference 6491 x 600/1000/1000 volt grade cables, or equal approved.

PVC cables shall conform to the details of the “Cables and Flexible cords” and “Cable Braid and Insulation Colours” clauses.

2.20 HEAT RESISTING CABLES
Final connections to cookers, water heaters, etc., shall be made using butyl rubber insulated cable as CMA reference 610 butyl (Single core 600/1000 Volt).

This type of cable shall be used in all instances where a temperature exceeding 100°F, but not exceeding 150°F is likely to be experienced. Final connections to all lighting fittings (and other equipment where a temperature in excess of 150°C likely to be experienced) shall be made using silicon rubber insulated cable or equal and approved.

2.21 FLEXIBLE CORDS
Shall be in accordance with the “Cable and Flexible Cords” clause. No cord shall be less than 24/0.2mm in size unless otherwise specified.

Circular white twin TRS flex shall be used for plain pendant fittings up to 100 watts. For all other types of lighting fittings the flexible cable shall be silicone rubber insulated.

No polythene insulated flexible cable shall be used in any lighting fitting or other appliance (see “Heat Resisting Cables” Clause 30).

2.22 CABLE ENDS AND PHASE COLOURS
All cable ends connected up in switchgear, MCB panels etc., shall have the insulation carefully cut back and the ends sealed with Hellerman rubber slip on cable end markers.

The markers shall be of appropriate phase colour for switch and all other live feeds to the details of the “Cable Insulation Colours” clause. Black cable with black end markers shall only be used for neutral cables.

2.23 CABLE INSULATION COLOURS
Unless otherwise stated in later clauses the insulation colours shall be in accordance with the following table.

Where other systems are installed the cable colours shall be in accordance with the details stated in the appropriate clause.
SYSTEM	**INSULATION COLOUR**	**CABLE**
END | | MARKER

Main and Sub-Main

a) Phase | Red
Red

b) Neutral | Black
Black

1) **Sub-Circuits**
 Single Phase

a) Phase | Red
Red

b) Neutral | Black
Black

2.24 **SUB-CIRCUIT WIRING**
For all lighting and sockets wiring shall be carried out in the “looping in” system and there shall be no joints whatsoever. No lighting circuits shall comprise more than 20 points when protected by 10A MCB. Cables with different cross-section area of copper shall not be used in combination.

Lighting circuits P. V.C. cable 1.5mm2 for all lighting circuits indicated on the drawing.
Power circuits P.V.C cable (minimum sizes).
(i) 2.5mm2 for one, two or three 5Amp sockets wired in parallel.

(ii) 2.5mm2 for one 15Amp socket.

(iii) 2.5mm2 for maximum of ten switched 13 Amp sockets wired from 30 Amp MCB.
The wiring sizes for lighting circuits and sockets are shown on the drawings. In such cases, the sizes shown on the drawings shall prevail over the sizes specified.

Wiring sizes for other appliances shall be shown on the drawing or specified in later clauses of this specification.

D-12.
2.25 **SPACE FACTOR**

The maximum number of cables that may be accommodated in a given size of conduit or trunking or duct is not to exceed the number in Tables B.5 and B.6 or as stated in Regulation B.91, B.117 and B.118 of the I.E.E Regulations whichever is appropriate.

2.26 **INSULATION**

The insulation resistance to earth and between poles of the whole wiring system, fittings and lumps, shall not be less than the requirements of the latest edition of the I.E.E Regulations. Complete tests shall be made on all circuits by the Sub-contractor before the installations are handed over.

A report of all tests shall be furnished by the Sub-Contractor to the Engineer. The Engineer will then check test with his own instruments if necessary.

2.27 **LIGHTING SWITCHES**

These shall be mounted flush with the walls, shall be contained in steel or alloy boxes and shall be of the gangs ratings and type shown in the drawings. They shall be as manufactured by M.K. Electrical Ltd., or other equal and approved to KS 04 – 247: 1988

2.28 **SOCKETS AND SWITCHED SOCKETS**

These shall be flush pattern in steel/pvc box and shall be of the gangs and type specified in the drawings.

They shall be 13- Amp, 3-pin, shuttered, switched and as manufactured by “M.K. Electrical Co. Ltd.”, or other approved equal to KS 04 – 246: 1987

2.29 **FUSED SPUR BOXES**

These shall be flush, D.P switched as in steel/pvc box and of type and make specified in the drawings complete with pilot light and as manufactured by “M. K. Electrical Company Ltd”, or other approved equal. KS 04 – 247: 1988

2.30 **COOKER OUTLETS**

These shall be flush mounted with 13-A switched socket outlet and neon indicator Lamps.

The cooker control units shall be as manufactured by “M.K. Electrical Company Ltd”, or other approved equal KS 04 – 247: 1988
2.31 CONNECTORS
Shall be specified in the drawings and appropriate rating. These shall be fitted at all conduit box lighting point outlets for jointing of looped P.V.C cables with flexible cables of specified quality.

2.32 LAMPHOLDERS
Shall be of extra heavy H.O skirted and shall be provided for every specified lighting fitting and shall be B.C.; E.S.; or G.E.S as required. All E.S. and G.E.S. holders shall be heavy brass type (except for plain pendants where the reinforced bakelite type shall be used). The screwed cap of the E.S and G.E.S. holders shall be connected to the neutral.

Where lampholders are supported by flexible cable, the holders shall have “cord grip” arrangements and in the case of metal shades earthing screws shall be provided on each of the holders.

The Sub-Contractor must order the appropriate type of holder when ordering lighting fittings, to ensure that the correct types of holders are provided irrespective of the type normally supplied by the manufacturers.

2.33 LAMPS
All lamps shall be suitable for normal stated supply voltage and the number and sizes of lamps detailed on the drawings shall be supplied and fixed. The Sub-Contractor must verify the actual supply voltage with the supply authority before ordering the lamps.

Tungsten filament lamps shall be manufactured in accordance with KS 04 – 112:1978 for general service lamps and KS 04 – 307:1985 for lamps other than general services. Tubular fluorescent lamps shall comply with KS 04 – 464:1982. Pearl lamps shall be used in all fittings unless otherwise specified.

2.34 LIGHTING FITTINGS AND STREET LIGHTING LANTERNS
This Sub-Contract shall include for the provision, handling charges, taking the delivery, safe storage, wiring (including internal wiring) assembling and erecting of all lighting fittings shown on the drawings.
All fittings and pendants shall be fixed to the conduit boxes with brass R/H screws. These to be in line with metal finish of fittings. The lighting fittings are detailed for the purpose of establishing a high standard of finish and under no circumstances will substitute fittings be permitted.
In case of rectangular shaped ceiling fittings, the extreme ends of the fittings shall be secured to suitable support in addition to the central conduit box fittings. Supports shall be provided and fixed by the Sub-Contractor.

D-14.
The whole of the metal work of each lighting fittings shall be effectively bonded to earth. In the case of ball and/or knuckle joints short lengths of flexible cable shall be provided, bonded to the metal work on either side of the joints. If the above provisions are not made by the manufacturers, the Sub-contractor shall include cost of additional work necessary in his tender. See “Flexible Cords” clause for details of internal wiring of lighting fittings. Minimum size of internal wiring shall be 20/0.20mm (23/0.067). Each lighting fitting shall be provided with number type and size of lamps as detailed on the drawings. It is to be noted that some fittings are suspended as shown on the drawings.

Where two or more points are shown adjacent to each other on the drawings, e.g. socket outlet and telephone outlet, they shall be lined up vertically or horizontally on the centre lines of the units concerned.

Normally, the units shall be lined up on vertical centre lines, but where it is necessary to mount units at low level they shall be lined up horizontally.

2.35 **POSITIONS OF POINTS AND SWITCHES**

Although the approximate positions of all points are shown on the drawings, enquiry shall be made as to the exact positions of all M.C.B panels, lighting points, socket outlets etc, before work is actually commenced. The Sub-contractor must approach the Architect with regard to the final layout of all lights on the ceiling and walls.

The Sub-contractor must consult with the Engineer in liaison with the Clerk of Works, or the General Foreman on site regarding the positions of all points before fixing any conduit etc. The Sub-Contractor shall be responsible for all alterations made necessary by the non-compliance with the clause.

2.36 **STREET/SECURITY OUTDOOR LIGHTING COLUMNS:**

The column shall be at a minimum of 225mm in the ground on 75mm thick concrete foundations and the pole upto 150mm shall be surrounded with concrete. The top bracket and plain section of the columns shall be common to and interchangeable with all brackets with maximum mismatching tolerance of 3mm between any pole and bracket. After manufacture and before erection the columns shall be treated with an approved mordant solution which shall be washed off and the whole allowed to dry. Thereafter, the columns shall be painted with one undercoat and two coats of gloss paint to an approved colour. All columns shall be complete with fused cut-outs.

2.37 **TIMING CONTROL SWITCH**

These shall be installed where shown on the drawings. Photocell timing control circuits which will operate ‘on’ with a specified level of darkness and ‘off’ with a given level of light. The initial adjustment will be done with approval of the Electrical Engineer.
2.38 **WIRING SYSTEM FOR STREETLIGHTING**

Cables shall be as indicated on the drawings, and shall be laid in a cable trench 450mm deep along the road sides and 600mm deep across the roads and 900mm away from the road kerb or 1500mm away from the edges of the road. ‘Loop-in’ and ‘Loop-out’ arrangement shall be used at every pole. Wiring to the lanterns on each pole shall be with 1.5mm² PVC twin insulated and sheathed cable with earth wire shall be laid at least 600mm below the finished road level on a compact bed of murram at least 50mm thick and covered with a concrete surrounded 150mm thick.

2.39 **METAL CONTROL PILLAR**

These shall be metal clad and fabricated as per contract drawings and specification. The Sub-Contractor shall supply, install, test and commission control pillars including supplying, fixing connecting switchgears as detailed on the appropriate drawings.

2.40 **CURRENT OPERATED EARTH LEAKAGE CIRCUIT BREAKER**

Current operated earth leakage circuit breaker shall conform to B.S.S. 4293:68 rated at 240 volts D.P. 50 cycles A.C. Mains.

The breaker shall be provided with test switch and fitted in weather proof enclosure for surface mounting. The rated load current and earth fault operating current shall be as specified in the drawings. These shall be as manufactured by Crabtree, Siemens or other equal and approved.

2.41 **M.V. SWITCHBOARD AND SWITCHGEAR**

The switchboard shall be manufactured in accordance with KS04-226 which co-ordinates the requirements for electrical power switchgear and associated apparatus. It is not intended that this K.S. should cover the requirements for specified apparatus for which separate Kenyan Standard exist. All equipment and material used in the switchboard shall be in accordance with the appropriate Kenya Standard.

The switchboard shall comprise the equipment shown on the drawings together with all current transformers, auxiliary fuses, labels, small wiring and interconnections necessary for the satisfactory operation of the switchboard.

D-16.
Switchboard shall be of the flush fronted, enclosed, metal clad type with full front or rear access as called for in the particular specifications, suitable for indoor use, sectionalized as necessary to facilitate transport and erection. The maximum height of the switchboard is to be approximately 2.0 meters. A suitable connection chamber containing all field terminals shall be provided at the top or bottom of the switchboard as appropriate.

Before manufacture, the Sub-Contractor shall submit to the consulting Engineer for approval of detailed drawings showing the layout, construction and connection of the switchboard.

All bus-bars and bus-bar connections shall consist of high conductivity copper and be provided in accordance with KS 04-226: 1985. The bus-bars shall be clearly marked with the appropriate phase and neutral colours which should be red, yellow, blue for the phases and black for neutral. The bus-bars shall be so arranged in the switchboard that the extensions to the left and right may be made in the future with ease should the need arise.

Small wiring, which will be neatly arranged and cleated, shall be executed in accordance with B.S. 158 and the insulation of the wiring shall be colored according to the phase or neutral connection.

Switches and fuse switches, shall be in strict accordance with KS04-183:1978 Class 2 switches. Means of locking the switch in the “OFF” position shall be provided.

All fuse switches shall comply with KS04-183:1978, PARTS 2 and 3 a fault rating at least equal to the fault rating of the switchboard in which they are installed. Cartridge fuse links to KS 04-183:1978 category A.C. 46, class Q1 and fusing factor not exceeding 1.5 shall be supplied with each fused switch.

Mounting arrangements shall be such that individual complete fuse switches may be disconnected and withdrawn when necessary without extensive dismantling work. When switches are arranged in their formation all necessary horizontal and vertical barriers shall be provided to ensure segregation from adjacent units. Means of locking the switch in the “OFF” position shall be provided.
2.42 STEEL CONDUITS AND STEEL TRUNKING

Conduits shall be of heavy gauge class “B” welded to Standard specification KS 04-180:1985. In no case will conduit smaller than 20mm diameter be used on the works. Conduits installed within buildings shall be black enameled finish except where specified otherwise. Where installed externally or in damp conditions they shall be galvanised. Conduit fittings, accessories or equipment used in conjunction with galvanised conduits shall also be galvanised or otherwise as approved by the service engineer.

Metal trunking shall be fabricated from mild steel of not less than 18 swg. All sections of trunking shall be rigidly fixed together and attached to the framework or fabric or the building at intervals of not less than 1.2m. Joint trunking shall not overhang fixing points by more than 0.5m.

All trunking shall be made electrically continuous by means of 25 x 3mm copper links across each joint and where the trunking is galvanised, the links shall be made by galvanised flat iron strips.

All trunking fittings (i.e. Bends, tees, etc) shall leave the main through completely clear of obstructions and continuously open except through walls and floors at which points suitable fire resisting barriers shall be provided as may be necessary. The inner edge of bends and tees shall be chamfered where cables larger than 35mm² are employed.

Where trunking passes through ceilings and walls the cover shall be solidly fixed to 150mm either side of ceilings and floors and 50mm either side of walls.

Screws and bolts securing covers to trunking or sections of covers together shall be arranged so that damage to cables cannot occur either when fixing covers or when installing cables in the trough.

Where trunking is used to connect switchgear of fuseboards, such connections shall be made by trunking fittings manufactured for this purpose and not by multiple conduit couplings.

Where vertical sections of trunking are used which exceed 4.5m in length, staggered tie off points shall be provided at 4.5m intervals to support the weight of cables.

Unless otherwise stated, all trunking systems shall be painted as for conduit.
Where a wiring system incorporates galvanized conduit and trunking, the trunking shall be deemed to be galvanized unless specified otherwise.

The number of cables to be installed in trunking shall be such as to permit easy drawing in without damage to the cables, and shall in no circumstances be such that a space factor of 45% is exceeded.

Conduit and trunking shall be mechanically and electrically continuous. Conduit shall be tightly screwed between the various lengths so that they butt at the socketed joints. The internal edges of conduit and all fittings shall be smooth, free from burrs and other defects. Oil and any other insulating substance shall be removed from the screw threads; where conduits terminate in fuse-gear, distribution boards, adaptable boxes, non-spouted switchboxes, etc., they shall, unless otherwise stated, be connected thereto by means of smooth bore male brass bushes, compression washers and sockets. All exposed threads and abrasions shall be painted using an oil paint for black enameled tubing and galvanising paint for galvanised tubing immediately after the conduits are erected. All bends and sets shall be made cold without altering the section of the conduit. The inner radius of the bed shall not be less than four (4) times the outside diameter of the conduit. Not more than two right angle bends will be permitted without the inter-position of a draw-in-box. Where straight runs of conduit are installed, draw-in-boxes shall be provided at distances not exceeding 15mm. No tees, elbows, sleeves, either of inspection or solid type, will be permitted.

Conduit shall be swabbed out prior to drawing in cables, and they shall be laid so as to drain of all condensed moisture without injury to end connections.

Conduits and trunking shall be run at least 150mm clear of hot water and steam pipes, and at least 75mm clear of cold water and other services unless otherwise approved by the services engineer. All boxes shall conform to KS 04 – 668: 1986, to be of malleable iron, and black enameled or galvanised according to the type of conduit specified. All accessory boxes shall have threaded brass inserts. Box lids where required shall be heavy gauge metal, secured by means of zinc plated or cadmium plated steel screws. All adaptable boxes and lids of the same size shall be interchangeable. Boxes used on surface work are to be tapped or drilled to line up with the conduit fixed in distance type saddles allowing clearance between the conduit and wall without the need for setting the conduit.
Where used in conjunction with mineral insulated copper sheathed cable, galvanised boxes shall be used and painted after erection.

Draw-in boxes in the floors are generally to be avoided but where they are essential they must be grouped in positions approved by the services engineer and covered and by the suitable floor traps, with non-ferrous trays and covers.

The floor trap covers are to be recessed and filled in with a material to match the floor surface.

The Sub-contractor must take full responsibility for the filling in of all covers, but the filling in material will be supplied and the filling carried out by the main building contractor.

Where buried in the ground outside the building the whole of the buried conduit is to be painted with two coats of approved bitumastic composition before covering up.

Where run on the surface, unpainted fittings and joints shall be painted with two coats of oil bound enamel applied to rust and grease free metalwork.

2.43 TESTING ON SITE

The Sub-contractor shall conduct during and at the completion of the installation and, if required, again at the expiration of the maintenance period, tests in accordance with the relevant section of the current edition of the Regulations for the electrical equipment of buildings issued by the I.E.E of Great Britain, the Government Electrical Specification and the Electric Supply Company's By-Laws.

(a) Tests shall be carried out to prove that all single pole switches are installed in the 'live' conductor.

(b) Tests shall be carried out to prove that all socket outlets and switched socket outlets are connected to the 'live' conductor in the terminal marked as such, and that each earth pin is effectively bonded to the earth continuity system. Tests shall be carried out to verify the continuity of all conductors of each 'ring' circuit.

(c) Phase tests shall be carried out on completion of the installation to ensure that correct phase sequence is maintained throughout the installation. Triplicate copies of the results of the above tests shall be provided within 14 days of the witnessed tests and the Sub-contractor will be required to issue to the service engineer the requisite certificate upon completion as required by the regulations referred to above.
(d) Any faults, defects or omissions or faulty workmanship, incorrectly positioned or installed parts of the installation made apparently by such inspections or tests shall be rectified by the Sub-contractor at his own expense.

(e) The Sub-contractor shall provide accurate instruments and apparatus and all labour required to carry out the above tests. The instruments and apparatus shall be made available to the services engineer to enable him to carry out such tests as he may require.

The Sub-contractor shall generally attend on other contractors employed on the project and carry out such electrical tests as may be necessary.

The Sub-contractor shall test to the services engineer’s approval and as specified elsewhere in this specification or in standards and regulations already referred to, all equipment, plant and apparatus forming part of the works and before connecting to any power or other supply and setting to work.

Where such equipment, etc., forms part of or is connected to a system whether primarily or of an electrical nature or otherwise (e.g. air conditioning system) the Sub-contractor shall attend on and assist in balancing, regulating, testing and commissioning, or if primarily an electrical or other system forming part of works, shall balance, regulate, test and commission the system to the service engineer’s approval.
APPENDIX TO GENERAL SPECIFICATIONS OF MATERIALS AND WORKS

The electrical sub-contractor shall comply with the following:-

1. Government Electrical Specifications No. 1 and No. 2.

2. All requirements of Kenya Power and Lighting Company Limited, and Communications Commission of Kenya (CCK).
SECTION E

SCHEDULE OF CONTRACT DRAWINGS
SCHEDULE OF CONTRACT DRAWINGS

a) Drawing No. E01-CEISP-DPUs
SECTION F

PARTICULAR SPECIFICATIONS

OF

MATERIALS AND WORKS
PARTICULAR SPECIFICATIONS

1.0 SITE LOCATION

The site of the proposed works is at **107 DISTRICTS all over Kenya.**

2.0 SCOPE OF WORKS

The works to be carried out under this sub-contract comprise supply, installation, testing and commissioning of the following:

Electrical Works

This shall include:

a. Electrical Installation Works.
b. Fire Alarm System Works.
c. Telephone points complete with CAT 5E cable wiring
d. Computer points.

This shall be **as specified in the bills of quantities and to the approval of the Electrical Engineer.**

3.0 MATERIALS FOR THE WORKS

Materials shall be as specified in Section D and in the Bills of Quantities of this document which shall be read in conjunction with contract drawings. Alternative materials shall be accepted only after approval by the Project Manager.
SECTION G

SCHEDULE OF UNIT RATES
SCHEDULE OF UNIT RATES

1. The tenderer shall insert unit rates against the items in the following schedules and may add such other items as he considers appropriate.

2. The unit rates shall include for supply, transport, insurance, delivery to site, storage as necessary, assembling, cleaning, installing, connecting, profit and maintenance in defects liability and any other obligation under this contract.

3. The unit rates will be used to assess the value of additions or omissions arising from authorised variations to the contract works.

4. Where trade names or manufacturer’s catalogue numbers are mentioned in the specification, the reference is intended as a guide to the type of article or quality of material required. Alternative brands of equal and approved quality will be accepted.
SCHEDULE OF UNIT RATES

<table>
<thead>
<tr>
<th>NO</th>
<th>DESCRIPTION</th>
<th>QTY</th>
<th>UNIT</th>
<th>UNIT RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>KSHS</td>
<td>CT S</td>
</tr>
<tr>
<td>1)</td>
<td>Cables:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>i) supply and install PVC /SWA/ PVC copper Cables:</td>
<td>1</td>
<td>LM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) 2 -core 6mm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) 2 -core 10mm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) 4 -core 10mm²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii) supply and install PVC single core copper cables:</td>
<td>1</td>
<td>LM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a) 3 x 4.0 sq. mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b) 3 x 6.0 sq. mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c) 3 x 10 sq. mm</td>
<td>1</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>2)</td>
<td>8 Way SPN Consumer Unit as Crabtree or equivalent.</td>
<td>1</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>3)</td>
<td>6 Way TPN distribution board as Crabtree or equivalent.</td>
<td>1</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>4)</td>
<td>9Way TPN Distribution Board as Crabtree or equivalent</td>
<td>1</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>5)</td>
<td>12 Way TPN distribution board as Crabtree or equivalent.</td>
<td>1</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>6)</td>
<td>100 A SPN isolator as Crabtree.</td>
<td>1</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>7)</td>
<td>240V-24 hour Time switch</td>
<td>1</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>8)</td>
<td>100A Busbar Chamber</td>
<td>1</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>9)</td>
<td>Security floodlight 500W(Metal Halogen)</td>
<td>1</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>10)</td>
<td>20ATPN Contactor</td>
<td>1</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>11)</td>
<td>FITTINGS:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>i) 1 x 36w, 1200mm fluorescent fitting c/w decorative louvers as THORN or approved equivalent.</td>
<td>1</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ii) 2 x 36w, 1200mm fluorescent fitting c/w opal diffuser as THORN CAT. No. PPD24 or approved equivalent.</td>
<td>1</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iii) 2 x 58w, 1500mm fluorescent fitting c/w louvers as THORN or approved equivalent</td>
<td>1</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iv) 1x58w, 1500mm fluorescent fitting c/w louvers as THORN or approved equivalent.</td>
<td>1</td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>